
1

LLM ASAP: LLM으로빠르게개발하기
Jinho Lee, Solutions Architect | 04 Dec 2023

2

• LLMs in Context

• Using LLM APIs

• Prompt Engineering

• Using LLM Workflow Frameworks

• Combining LLMs with Your Data

Agenda

3

Evolution of Language Models

• Historically, language models were trained for
specific tasks, including

• Text classification

• Entity extraction

• Question answering

• 2017: The LLM revolution begins, powered by
"transformer" models

• A deep learning architecture family specializing
in processing sequences of datapoints
("tokens")

• Uses "self-attention" to determine which parts
of a sequence help interpret which other parts

• Introduced by Google/UToronto researchers in
"Attention is All You Need" paper

• Now, much larger models trained on
extraordinary quantities of data are central to
Generative AI

From: Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, Xia Hu

https://github.com/Mooler0410/LLMsPracticalGuide

You are here

4

Foundation Models and LLMs

• Transformer models built with unsupervised learning
proved to be effective next-token predictors

• Foundation models: Trained on massive unlabeled
datasets and can be tuned to specialized applications
with comparatively few examples

• Large Language Model: Scaled-up architectures that can
accomplish language-related tasks like summarizing,
translating, or composing new content

For more, see the NVIDIA blog "What Are Foundation Models?"

5

Example App 1: Email Triage

6

Demo Video:

Email Triage App

7

How It Works

Semi-structured Text Input
Email Body

LLM API Call
Prompt + Email Body

Structured Output
JSON

8

Using LLM APIs

99

Common Elements of LLM APIs

• Import package(s)

Example with OpenAI Chat-GPT

import os
import openai
from dotenv import load_dotenv, find_dotenv

load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY’]

model="gpt-3.5-turbo"
temperature = 0.9

prompt = "Write a haiku about large language models."
messages = [{"role": "user", "content": prompt}]

response = openai.ChatCompletion.create(
 model=model,
 messages=messages,
 temperature=temperature,
)

print(response.choices[0].message["content"])

Endless words unfold,
Giant minds, vast text arrays,
Wisdom from the void.

1010

Common Elements of LLM APIs

• Import package(s)

• Load API key

Example with OpenAI Chat-GPT

import os
import openai
from dotenv import load_dotenv, find_dotenv

load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY’]

model="gpt-3.5-turbo"
temperature = 0.9

prompt = "Write a haiku about large language models."
messages = [{"role": "user", "content": prompt}]

response = openai.ChatCompletion.create(
 model=model,
 messages=messages,
 temperature=temperature,
)

print(response.choices[0].message["content"])

Endless words unfold,
Giant minds, vast text arrays,
Wisdom from the void.

1111

Common Elements of LLM APIs

• Import package(s)

• Load API key

• Select model and parameters

Example with OpenAI Chat-GPT

import os
import openai
from dotenv import load_dotenv, find_dotenv

load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY’]

model="gpt-3.5-turbo"
temperature = 0.9

prompt = "Write a haiku about large language models."
messages = [{"role": "user", "content": prompt}]

response = openai.ChatCompletion.create(
 model=model,
 messages=messages,
 temperature=temperature,
)

print(response.choices[0].message["content"])

Endless words unfold,
Giant minds, vast text arrays,
Wisdom from the void.

1212

Common Elements of LLM APIs

• Import package(s)

• Load API key

• Select model and parameters

• Set prompt

Example with OpenAI Chat-GPT

import os
import openai
from dotenv import load_dotenv, find_dotenv

load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY’]

model="gpt-3.5-turbo"
temperature = 0.9

prompt = "Write a haiku about large language models."
messages = [{"role": "user", "content": prompt}]

response = openai.ChatCompletion.create(
 model=model,
 messages=messages,
 temperature=temperature,
)

print(response.choices[0].message["content"])

Endless words unfold,
Giant minds, vast text arrays,
Wisdom from the void.

1313

Common Elements of LLM APIs

• Import package(s)

• Load API key

• Select model and parameters

• Set prompt

• Call API

Example with OpenAI Chat-GPT

import os
import openai
from dotenv import load_dotenv, find_dotenv

load_dotenv(find_dotenv())
openai.api_key = os.environ['OPENAI_API_KEY’]

model="gpt-3.5-turbo"
temperature = 0.9

prompt = "Write a haiku about large language models."
messages = [{"role": "user", "content": prompt}]

response = openai.ChatCompletion.create(
 model=model,
 messages=messages,
 temperature=temperature,
)

print(response.choices[0].message["content"])

Endless words unfold,
Giant minds, vast text arrays,
Wisdom from the void.

14

Selecting a Large Language Model

• Selection factors

• Benchmark scores on relevant benchmark

• Quality and quantity of training data

• Human evaluation/validation

• Inference latency

• Cost of deployment, use, or price per tokens

• Context size

• License terms

• Domain specificity

• Models tuned to specific domains can sometimes
perform as well as models that are orders of magnitude
larger but have only been pretrained

Task Type Benchmarks

Reasoning HellaSwag, WinoGrande, PIQA

Reading comprehension/

question answering

BoolQ, TriviaQA,

NaturalQuestions

Math word problems Math, GSM8K, svamp,

mathqa, algebra222

Coding HumanEval, MBPP

Multi-task MMLU, BBH, GLUE

Separating fact from

fiction in training data

TruthfulQA

Multi-turn MTBench, QuAC

Multilingual XCOPA, TyDiQA-GoldP

Long context SCROLLS

Example tasks and corresponding benchmarks

15

Benchmark Example
Hugging Face LLM Leaderboard

From https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

16

Prompt Engineering

17

Prompting Methodologies

LLM

Zero-Shot

Q: What is the capital

of France? A: 'Paris'

Few-Shot

Prompt design is crucial to obtaining good results from an LLM

LLM

Q: What is the capital

of Spain?

A: {'answer': 'Madrid'}

Q: What is the capital

of Italy?

A: {'answer': 'Rome'}

Q: What is the capital

of France?

A: {'answer': 'Paris'}

Asking the foundation model to perform a task with no in-prompt example Providing examples as context to the foundation model related to a task

Better aligned responses
Higher accuracy on complex questions

Lower token count
More space for context

1818

Email Generation Prompt

• Synthetic data generation (SDG) to protect privacy

• Iterates over customer name, feedback subject, and
product

• Avoids sending actual confidential email data outside
the company

• Important: Check model license

• Commercial vs. noncommercial

• Prohibitions on using one LLM's output to train
another LLM

Making synthetic test data

template_string = "You are a musician named {customer} who purchased a {product} \
from a musical instrument and audio equipment manufacturer named Melodious. \
Write an email to the company's customer support team to {feedback}. \
When you write emails, you get right to the point and avoid pleasantries\
like I hope this email finds you well or I hope you're having a great day. \
Start with a Subject line. Do not be overly formal or polite. Be concise."

Hello Melodious Customer Support,

I am Zhiyong, a musician who recently purchased a CG Series Grand Piano from your esteemed
company. I wanted to share some exciting news with you.

I have been invited to perform at a prestigious musical event next month, and I am delighted
to inform you that I will be showcasing the exceptional quality and sound of the CG Series
Grand Piano during my performance.

As a professional musician, it is crucial for me to have a reliable instrument that delivers
impeccable sound and performance. The CG Series Grand Piano has exceeded my expectations in
every aspect, and I am confident it will captivate the audience with its rich tonal range
and exceptional touch sensitivity.

I will make sure to mention Melodious as the manufacturer of this remarkable instrument
during my performance, as I believe it deserves recognition for its outstanding
craftsmanship.

Thank you for providing musicians like me with such high-quality instruments. I will keep
you updated on the event and share any media coverage that might arise from it.

Best regards,

Zhiyong

1919

Chain of Thought Prompts

• Ask the model to take a series of intermediate steps
before producing the desired result

• Performance gain can be significant compared
to zero-shot prompting

• Adding “Let’s think step by step” or "Let's think
about this logically" to the prompt can improve the
result from some models

• Can supply specific steps if there's a consistent
process

How to Engage LLMs with Reasoning

Inspired by DeepLearning.AI "ChatGPT Prompt Engineering for Developers"

triage_prompt = """You are an efficient administrative assistant, \
sorting messages for customer service representatives at a musical instrument \
and audio equipment manufacturer named Melodious. You receive an email, shown \
below in tick marks, from a customer, regarding a product. \
Think logically step by step to assist the customer service representative. \

Step 1: If the customer is writing about a specific product,
determine which type from this list.

Products:
"Acoustic Pianos", \
"Digital Pianos and Keyboards", \
"Piano Accessories", \
"String Instruments", \
"Woodwind and Brass Instruments", \
"Woodwind and Brass Accessories", \
"Professional Audio Equipment".

Step 2: If message mentions a product in the list above, \
write a specific one-sentence summary of the exact issue. \

Step 3: Determine the tone of the email and provide it.

Step 4: Classify how urgently a response is warranted, using the \
following categories: "Urgent Response", "Not Urgent Response", \
or "No Response Required"

Step 5: Output your answers with the following headers: \
Customer Name, Product, Product Category, Summary, Tone, Response \
Urgency.

Use the following format:

Step 1: <step 1 reasoning>
Step 2: <step 2 reasoning>
Step 3: <step 3 reasoning>
Step 4: <step 4 reasoning>
Step 5: <step 5 reasoning>
``Email: {body}``
"""

20

Step 1: The customer is writing about a specific product, which is the CG Series
Grand Piano.

Step 2: The exact issue mentioned in the email is the customer's satisfaction and
praise for the exceptional quality and performance of the CG Series Grand Piano.

Step 3: The tone of the email is positive and appreciative.

Step 4: A response is not urgently required as the customer is expressing
satisfaction and praise.

Step 5:
Customer Name: Zhiyong
Product: CG Series Grand Piano
Product Category: Acoustic Pianos
Summary: Customer expressing satisfaction and praise for the exceptional quality
and performance of the CG Series Grand Piano.
Tone: Positive and appreciative
Response Urgency: No Response Required

triage_prompt = """You are an efficient administrative assistant, \
sorting messages for customer service representatives at a musical instrument \
and audio equipment manufacturer named Melodious. You receive an email, shown \
below in tick marks, from a customer, regarding a product. \
Think logically step by step to assist the customer service representative. \

Step 1: If the customer is writing about a specific product,
determine which type from this list.

Products:
"Acoustic Pianos", \
"Digital Pianos and Keyboards", \
"Piano Accessories", \
"String Instruments", \
"Woodwind and Brass Instruments", \
"Woodwind and Brass Accessories", \
"Professional Audio Equipment".

Step 2: If message mentions a product in the list above, \
write a specific one-sentence summary of the exact issue. \

Step 3: Determine the tone of the email and provide it.

Step 4: Classify how urgently a response is warranted, using the \
following categories: "Urgent Response", "Not Urgent Response", \
or "No Response Required"

Step 5: Output your answers with the following headers: \
Customer Name, Product, Product Category, Summary, Tone, Response \
Urgency.

Use the following format:

Step 1: <step 1 reasoning>
Step 2: <step 2 reasoning>
Step 3: <step 3 reasoning>
Step 4: <step 4 reasoning>
Step 5: <step 5 reasoning>
``Email: {body}``
"""

2121

Designing A Prompt For Analysis

• The more sophisticated ("aligned") a model is,
the fewer explicit cues it typically needs

• Common prompt elements

• Role: Dictate a job title along with a descriptive
adjective or two

• Instructions: Describe step-by-step what you
want done with action verbs

• Context: Bring relevant background info into
the prompt

• Output format: Many options

• Specificity: Be exacting in what you want; no
need to be too brief

• Elements to avoid

• Vagueness

• Unfounded assumptions

• Overly-broad topics

• Unnecessary brevity: Recent context window
sizes are 32k or even 128k tokens (approx. a
300 page book)

Incoming Email Analysis
triage_prompt = """You are an efficient administrative assistant, sorting \
 messages for customer service representatives at a musical instrument \
 and audio equipment manufacturer named Melodious. You receive an \
 email, shown below in tick marks, from a customer, regarding a product.\
 Read the email and then perform the following actions:
 (1) Determine the customer's name.
 (2) Determine which product the customer is talking about.
 (3) Classify the product into one of the following categories:
 "Acoustic Pianos", \
 "Digital Pianos and Keyboards", \
 "Piano Accessories", \
 "String Instruments", \
 "Woodwind and Brass Instruments", \
 "Woodwind and Brass Accessories", \
 "Professional Audio Equipment".
 (4) Write a specific one-sentence summary of the exact issue, without \
 using the name of the product.
 (5) Determine the tone of the email and provide it.
 (6) Classify how urgently a response is warranted, using the following \
 categories: "Urgent Response", "Not Urgent Response", and "No \
 Response Required"
 (7) Organize your answers into a JSON object with the following keys:
 Customer Name, Product, Product Category, Summary, Tone, Response Urgency.
 ``Email: {body}``"""

2222

Output Formatting

• Your prompt can specify the output format

• JSON

• CSV

• HTML

• Markdown

• Lists

• Tables

• YAML

• Code

• … list is always growing

• Output received via API will typically be a string and
require a conversion step for structured formats

• But some APIs now ensure JSON object output

• Even high-end LLMs can produce imperfect formats
— tuning can help, but also need error-checking

Pulling answers out of a response

(7) Organize your answers into a JSON object with the following keys:
 Customer Name, Product, Product Category, Summary, Tone, Response Urgency.

{
 "Customer Name": "Zhiyong",
 "Product": "CG Series Grand Piano",
 "Product Category": "Acoustic Pianos",
 "Summary": "Positive feedback and praise for the CG Series Grand Piano",
 "Tone": "Positive",
 "Response Urgency": "No Response Required"

}

23

Preventing Undesirable LLM Behavior: Toxicity Checks & Guardrails
Add Boundaries To Ensure LLM Systems Operate According to Use Cases

NEMO GUARDRAILS

USER

LLM APP TOOLKITS
(E.G. LANGCHAIN)

LLMs

THIRD-PARTY
APPS

ENTERPRISE APPLICATION

TOPICAL SAFETY SECURITY

Focus interactions within a specific domain Prevent hallucinations, toxic or misinformative
content

Prevent executing malicious calls and handing
power to a 3rd party app

✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎

✕ ✕ ✕ ✕ ✕ ✕

✔︎ ✔︎ ✕ ✔︎ ✔︎ ✕

#COLANG pattern

 define user XXX1
 "Entry prompt about XXX1-

prompt"
 define bot XXX1
 "Answer for topic XXX1"
 define flow XXX1
 Step 1
 Step 2
 Step 3
 ...

24

Generate test
dataset: inputs and

outputs
Run LLM on inputs

Compare LLM
outputs to test

outputs
Score

Examples: QA, metadata generation, entity extraction

Known right answers

Create test dataset:
inputs

Run LLM on inputs
Human or AI applies
rubric or A/B testing

Score

Structured Data Generation

Unstructured Data Generation
Examples: Text generation, autocompletion, summarization

Many possible “good” answers

Evaluation Type Depends on Data

25

Example App 2: Research Summarization

26

Demo Video:

Issue Research

27

Document input
Document
processing

Conversion to
vectors

Vector storage

Prompt Document retrieval LLM API Call Text output

Data Preparation

How It Works

Live Interaction

28

Workflow Frameworks

29

Simplifying Development
Modularity and Flexibility

Building Components for
Complex Graph-Like Chains

Prompt

LLM

Memory

Doc
Loader

Chain
Storage/
Indexes

Agent

from langchain.schema import SystemMessage, HumanMessage
from langchain.chat_models import ChatOpenAI

swappable LLM
LLM = ChatOpenAI(openai_api_key=openai_api_key, model_name='gpt-3.5-turbo')

injecting the parameters into standardized chat messages
def write_poem(topic, language, llm=LLM):
 chat_messages = [
 SystemMessage(content=f'You are a poet who composes beautiful poems in

{language}.'),
 HumanMessage(content=f'Please write a four-line rhyming poem about {topic}.')
]
 return(llm(chat_messages).content)

LLM

Prompt

Simple Standalone Use

30

Simplifying Development
Modularity and Flexibility

from langchain.schema import SystemMessage, HumanMessage
from langchain.chat_models import ChatOpenAI

swappable LLM
LLM = ChatOpenAI(openai_api_key=openai_api_key, model_name='gpt-3.5-turbo')

injecting the parameters into standardized chat messages
def write_poem(topic, language, llm=LLM):
 chat_messages = [
 SystemMessage(content=f'You are a poet who composes beautiful poems in

{language}.'),
 HumanMessage(content=f'Please write a four-line rhyming poem about {topic}.')
]
 return(llm(chat_messages).content)

LLM

Prompt

from langchain.prompts.chat import ChatPromptTemplate,SystemMessagePromptTemplate,
HumanMessagePromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain

swappable LLM
LLM = ChatOpenAI(openai_api_key=openai_api_key, model_name='gpt-3.5-turbo')

standardized chat messages
system_template = 'You are a poet who composes beautiful poems in {language}.'
system_prompt = SystemMessagePromptTemplate.from_template(system_template)

human_template = 'Please write a five-line rhyming poem about {topic}.'
human_prompt = HumanMessagePromptTemplate.from_template(human_template)

full_prompt = ChatPromptTemplate.from_messages([system_prompt, human_prompt])

connectable chain
chain = LLMChain(llm=LLM, prompt=full_prompt)

flowing the parameters into the chain so they can be used by potentially
multiple prompts
def run_chain(topic, language):
 return(chain.run(topic=topic, language=language))

LLM

Prompt

Chain

Simple Standalone Use
Building Components for

Complex Graph-Like Chains

31

LLM Object init – default is "text-davinci-003"

llm = Agent(prompt_driver=OpenAiChatPromptDriver(
 api_key=os.environ["OPENAI_API_KEY"], model="gpt-3.5-turbo")

Simple request example
def write_poem(topic, language, llm=llm):
 rule_description = f'You are a poet who composes beautiful poems in {language}'
 llm.add_task(
 PromptTask("Please write a four lines rhyming poem about : '{{ args[0] }}'"\
 " and start with 'Voici mon poeme:'",
 rules=[Rule(value=rule_description)]))

 return llm.run(topic)

PIPELINE with multiple tasks, predefined, with rules, loader
def create_fr_poem_on_topic(info_to_know, demand):
 artifacts_onx = PdfLoader().load(info_to_know)

 task1 = TextSummaryTask(artifacts_onx[0].value)
 task2 = PromptTask("Follow the query '{{ demand }}' using it as context and "\
 "support the summary {{parent_output}}",
 rules=[
 Rule("You are a poet who composes beautiful poems."),
 Rule("Born in France, you speak French."),
 Rule("Sometimes you like to add a pun to your poem."),
])

 pipeline = Pipeline()
 pipeline.add_task(task1)
 pipeline.add_task(task2)
 pipeline.run()

create_fr_poem_on_topic("pdf/Mushrooms.pdf", "Write me a poem on a topic you know")

LLM Object init

llm = ChatOpenAI(openai_api_key=os.environ["OPENAI_API_KEY"],
 model_name='gpt-3.5-turbo')

Simple request example
def write_poem(topic, language, llm=llm):
 chat_messages = [
 SystemMessage(content='You are a poet who composes beautiful poems in '\
 f'{language}.'),
 HumanMessage(content=f'Please write a four line rhyming poem about {topic}.')
]

 return llm(chat_messages).content

CHAINING

standardized chat messages
system_template = 'You are a poet who composes beautiful poems in {language}.'
system_prompt = SystemMessagePromptTemplate.from_template(system_template)

human_template = 'Please write a four line rhyming poem about {topic}.'
human_prompt = HumanMessagePromptTemplate.from_template(human_template)

full_prompt = ChatPromptTemplate.from_messages([system_prompt, human_prompt])

connectable chain
chain = LLMChain(llm=llm, prompt=full_prompt)

flowing the parameters into the chain so they can be
used by potentially multiple prompts
def run_chain(topic, language):
 return chain.run(topic=topic, language=language)

LLM Object init + Node creation

llm = PromptModel(model_name_or_path="gpt-3.5-turbo", api_key=OPENAI_API_KEY)
prompt_node_llm = PromptNode(llm)

Simple request example
def write_poem(topic, language, llm=prompt_node_llm):
 agent_behavior_desc = 'You are a poet who composes beautiful poems in '\
 f'{language}.'
 agent_prompt = agent_behavior_desc + """ Please write a four line rhyming poem

about {query}."""

 conversational_agent = ConversationalAgent(
 prompt_node=llm,
 prompt_template=agent_prompt,)

 return conversational_agent.run(query=topic))

PIPELINE with multiple models
def translate_fr_poem(topic, other_lang):
 prompt_node_poem_prompt = PromptTemplate(
 prompt = "Write a four line poem on the topic of {query} in French")
 prompt_node_poem = PromptNode(LLM,
 default_prompt_template=prompt_node_poem_prompt)

 pipeline_poem = Pipeline()
 pipeline_poem.add_node(component=prompt_node_poem, name="poem", inputs=["query"])
 poem_fr = pipeline_poem.run(query=topic)

 if other_lang == "en":
 translator = TransformersTranslator(
 model_name_or_path="Helsinki-NLP/opus-mt-fr-en")
 document_poem = poem_fr["results"]
 res = translator.translate(documents=document_poem, query=None)
 return res
 else:
 return poem_fr["results"]

translate_fr_poem("growing mushrooms under the shining moon", "en")

Examples of Frameworks

LangChain

Open Source

Large user community

Extensive out-of-the-box integrations

Enterprise: LangSmith, LangChain Hub

Haystack

Open source by DeepSet

Designed for scaled search/retrieval

Evaluation pipelines for system eval

Deployable as REST API

Griptape

Open source or managed

Commercial support

Optimized for scalability and cloud

Encryption, access control, security

U
n

it
a

ry
 C

a
ll

C
h

a
in

 o
r

P
ip

e
li

n
e

C

a
ll

32

Simple Local Vector DB
LangChain components

Retrieval

Data loading

text_loader = WebBaseLoader("https://en.wikipedia.org/wiki/Poetry")

pages = text_loader.load()

Chunking

text_splitter = RecursiveCharacterTextSplitter(chunk_size = 300, chunk_overlap = 50)

chunks = text_splitter.split_text(pages[0].page_content)

Embedding (with an LLM-based embedding model, in this case)

embedding_model = OpenAIEmbeddings(openai_api_key=api_key)

vector_db = FAISS.from_texts(chunks, embedding=OpenAIEmbeddings())

Converting the vectorstore to a retriever

retriever = vector_db.as_retriever()

context_docs = retriever.get_relevant_documents("can you help on defining the big picture
on the tetrameter metric")

Conversion to
Vectors

Storage

Document
Processing

Document
input

https://en.wikipedia.org/wiki/Poetry

33

Combining LLMs with Your Data

34

Retrieval Augmented Generation (RAG)

Motivation

• Decouples an LLM from only being able to act on
original training data

• Obviates the need to retrain the LLM with the latest
data

• LLMs limited by context window sizes

Concept

• Connect LLM to data sources at inference time

• ex. Databases, Web, Documents, 3rd Party APIs, etc.

• Find relevant data

• Inject relevant data into the prompt

Components of the Email Assistant Application

1. Human input (prompt)

2. Vectorization (embedding)

3. Retrieve vectors and calculate distance

4. Extract closest matching docs

5. Inject relevant docs into the prompt

6. Output becomes up-to-date, more accurate,
with ability to cite source

Canonical RAG Workflow

Vector Database

Embedding Model

Data
User

PromptResponse

Context

LLM

Workflow

Framework

Guardrails Guardrails

36

Embeddings and the Vector Database
Searching via semantic similarity

• Embeddings are data (text, image, or other data)
represented as numerical vectors

• Input text -> embedding model -> output vector

• Part of semantic search

• Model trained to embed similar inputs close together

• Useful for: classification, clustering, topic discovery

• Many pretrained and trainable embedding model sources

• Modern ones are often deep neural networks

Query: Who will lead the construction team?

Chunk 1: The construction team found lead in the paint.

Chunk 2: Ozzy has been picked to lead the group.

Chunk 1 shares more keywords with the query, but semantic search

can differentiate the meanings of "lead" and understand that "team"

and "group" are similar, so Chunk 2 may be more helpful for the query.

Scientific

computing

Specialized

medical topics

High-performance

computing

Speech AI

2D representation of a 768-dimension embedding space

37

Stage 1: Data Preparation
Loading and Chunking Data

STORAGE DOC LOADERS DOC CHUNKING

Document loading, splitting/chunking,
storing

Load from file formats: PDF, JSON…
Return list of document objects

Manage context window size limitation
Improve relevance of content

loading with PyPDFLoader (or UnstructuredMarkdownLoader)

loaded_pdfdoc = PyPDFLoader("pdf/llm-ebook-part1.pdf")
pdf_pages = loaded_pdfdoc.load()

#first page that contains the metadata
#each page is a 'Document', containing both text and metadata
page0 = pdf_pages[0]

#pdf first page content and metadata
page0.page_content
>> 'A Beginner’s Guide to \nLarge Language Models\n
Part 1\nContributors:\nAnna...

Page0.metadata
>> {'source': 'pdf/llm-ebook-part1.pdf', 'page': 0}

chunking

from langchain.text_splitter import
RecursiveCharacterTextSplitter

text_r_chunking = RecursiveCharacterTextSplitter(
 # separator list - depending on the type of document
 separators=["\n\n", "\n", "!"],
 chunk_size=500,
 chunk_overlap=80,
 length_function=len

)

chunks = text_r_chunking.split_documents(pdf_pages)

chunks
>>[Document(page_content='A Beginner’s Guide to \nLarge
Language Models\nPart 1\nContributors:\nAnnamalai
Chockalingam\nAnk.....
ur Patel\nShashank Verma\nTiffany Yeung', metadata={'source':
'pdf/llm-ebook-part1.pdf', 'page': 0}),
Document(page_content='A Beginner’s Guide to Large Language
Models 2 Table of Contents Preface

38

Stage 2: Chunking
Challenges and Considerations

SPLITTING METHODS CHUNK SIZE

Need to pick right splitting method to ensure no-loss of information,
ex. Split on separators

20 page PDF file
loaded_pdfdoc = PyPDFLoader("pdf/llm-ebook-part1.pdf")
pdf_pages = loaded_pdfdoc.load()

initial splitter
text_r_chunking = RecursiveCharacterTextSplitter(
 # separator list - depending on the type of document
 separators=["\n\n", "\n", "!"],
 chunk_size=500,
 chunk_overlap=80,
 length_function=len

)

docs_pdf = text_r_chunking.split_documents(pdf_pages)
docs_pdf[0]
>>Document(page_content='A Beginner’s Guide to \nLarge
Language Models\nPart 1\nContributors:\nAnnamalai
Chockalingam\nAnkur Patel\nShashank Verma\nTiffany Yeung',
metadata={'source': 'pdf/llm-ebook-part1.pdf', 'page': 0})

Smaller chunk size (fine grained) vs. large chunk size (holistic)
Needs experimentation to find right-size chunk based on doc types

second version of the splitter, smaller chunk size
text_r_chunking_bis = RecursiveCharacterTextSplitter(
 # separator list - depending on the type of document
 separators=["\n\n", "\n", "!"],
 chunk_size=30,
 chunk_overlap=10,
 length_function=len

docs_pdf_bis =
text_r_chunking_bis.split_documents(pdf_pages)
docs_pdf_bis[0]
>>Document(page_content='A Beginner’s Guide to ',
metadata={'source': 'pdf/llm-ebook-part1.pdf', 'page': 0})
...

39

Stage 3: Retrieval Optimization
Optimization retrieval to accelerate performance

CONTEXT AWARENESS

Extend context window for chunks, smaller
chunks lose context

RE-RANKING

Retrieve more results, and rank on multiple
attributes to improve query relevance

SUBQUERY CHAINING

Decompose prompt to multiple retrieval stages

from langchain.text_splitter import MarkdownHeaderTextSplitter

markdown_document =
"# A Beginner's Guide to LLMs\n\n
Introduction to LLMs\n\n
A large language model is a type of artificial intelligence System\n\n
What are LLMs \n\n
LLMs are deep learning algorithms that can recognize, extract, summarize \n\n
Foundation Models vs. Fine-Tuned\n\n
Currently, the most popular method is customizing a model using parameter-efficient
customization techniques, such as p-tuning"

headers_to_split_on = [("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3"),]

markdown_splitter

= MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
md_header_splits = markdown_splitter.split_text(markdown_document)

>>[Document(page_content='A large language model is a type of artificial
intelligence System etc', metadata={'Header 1': 'A Beginner's Guide to LLMs', 'Header 2':
'Introduction to LLMs'}),
 Document(...,
 Document(page_content='Currently, the most popular method is customizing a model using
parameter-efficient customization techniques, such as p-tuning', metadata={'Header 1': 'A
Beginner's Guide to LLMs', 'Header 2': 'Introduction to LLMs','Header 3': 'Foundation Models
vs. Fine-Tuned'})]

Complex
Query

Decompose DB

Subquery 1

OutputCombine

Subquery 2

40

Building the App
Optimization retrieval to accelerate performance

WORKFLOW LLMChain StuffDocumentsChain

Retrieve docs, filter top N docs, and feed
into LLM to summarize

Combine LLM and composite prompt Combine documents to feed into LLM as
context within prompt

Used for langchain
document_prompt = PromptTemplate(
 input_variables=["title", "page_content"],
 template="Title: {title}\nContent: {page_content}",

)

prompt = PromptTemplate.from_template(
 'After conducting research on the topic of "{query}", '
 "you found the following resources. While these resources should be relevant to the topic,"
 "some may not be relevant. Use relevant resources as context to write a high-level "
 "overview of the topic in one paragraph. Include the names of SDKs, libraries,"
 "models, or frameworks if they are relevant.\n{context}"

<<<<..>>>>

 docs = _results_as_docs(results)

 class MyCustomHandler(BaseCallbackHandler):
 def on_llm_new_token(self, token: str, **kwargs) -> None:
 (...)

 llm = ChatOpenAI(
 model="gpt-3.5-turbo-16k",
 max_tokens=667,
 streaming=True,
 callbacks=[MyCustomHandler()],
)

 llm_chain = LLMChain(llm=llm, prompt=prompt)
 chain = StuffDocumentsChain(
 llm_chain=llm_chain,
 document_prompt=document_prompt,
 document_variable_name="context",
)

 summary = chain.run(query=query,
 input_documents=docs).strip()

 return {"summary": summary}

41

Explore NVIDIA AI Foundation Models
Nemotron-3, Code Llama, NeVA, Stable Diffusion XL, Llama 2, CLIP

https://catalog.ngc.nvidia.com/ai-foundation-modelshttps://llm.ngc.nvidia.com/playground

42

https://youtu.be/zjkBMFhNj_g?si=D58b19xaHrUta6Vl

[1hr Talk] Intro to Large Language Models – Andrej Karpathy

https://youtu.be/zjkBMFhNj_g?si=D58b19xaHrUta6Vl

43

What Did You Learn?

• Core concepts of LLM architecture and foundation models

• Factors for selecting between and evaluating LLM APIs

• Prompt engineering basics

• Workflow frameworks for LLMs

• Retrieval Augmented Generation (RAG)

• How these concepts apply to a demo app handling an
overflow of email

Many thanks to my colleagues Benjamin

Bayart, Chris Pang, and Chris Milroy for

major contributions to this session!

	Slide 1: LLM ASAP: LLM으로 빠르게 개발하기
	Slide 2
	Slide 3: Evolution of Language Models
	Slide 4: Foundation Models and LLMs
	Slide 5
	Slide 6
	Slide 7: How It Works
	Slide 8
	Slide 9: Common Elements of LLM APIs
	Slide 10: Common Elements of LLM APIs
	Slide 11: Common Elements of LLM APIs
	Slide 12: Common Elements of LLM APIs
	Slide 13: Common Elements of LLM APIs
	Slide 14: Selecting a Large Language Model
	Slide 15: Benchmark Example
	Slide 16
	Slide 17: Prompting Methodologies
	Slide 18: Email Generation Prompt
	Slide 19: Chain of Thought Prompts
	Slide 20
	Slide 21: Designing A Prompt For Analysis
	Slide 22: Output Formatting
	Slide 23: Preventing Undesirable LLM Behavior: Toxicity Checks & Guardrails
	Slide 24: Evaluation Type Depends on Data
	Slide 25
	Slide 26
	Slide 27: How It Works
	Slide 28
	Slide 29: Simplifying Development
	Slide 30: Simplifying Development
	Slide 31: Examples of Frameworks
	Slide 32: Simple Local Vector DB
	Slide 33
	Slide 34: Retrieval Augmented Generation (RAG)
	Slide 35: Canonical RAG Workflow
	Slide 36: Embeddings and the Vector Database
	Slide 37: Stage 1: Data Preparation
	Slide 38: Stage 2: Chunking
	Slide 39: Stage 3: Retrieval Optimization
	Slide 40: Building the App
	Slide 41: Explore NVIDIA AI Foundation Models
	Slide 42
	Slide 43: What Did You Learn?

